
. '

Another Advantage of Free Choice: ·
Comp1letely Asynchronous Agreement Protocols

(Extended Abstract)

Michael Ben-Or t

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

1. Iotroduction
Recently, Fischer, Lynch and Paterson (3)

proved that no completely asynchronous con-•
I

sensus protocol can tolerate even a single un-
announced process death. We exhibit here a
probabilistic solution for this problem, which
guarantees that ~ as long as a majority of the
processes cont'fnues to operate, a deci~ion will be
made (Theorem ~). 0.ur solution is co_mpletely
asynchronous and is rather strong: As in (4}, it
is g~aranteed to work with probability 1 even
against an· adversary sc~eduler who knows all
about the system.

We apply the same ideas to the ''Byzantine" ·.
type of failure. Here, if the number of faulty
processes, t, satisfies St ~ N, where N is the
total number of the p~ocesses, then completely
asynchronous agreement is possible (Theorem 2).

Our protocols provide the first example of
a synchronization problem that has a probabil­
istic solution which is always guaranteed to work,
but cannot be solved at all by any de~erminis-

t Research supported by a Wei1mann Postdoctoral fellow•
ship and by NSF grant MCS-8006938.

Permission to copy without fee all or part of this material is granted
provided that the copiC$ are not made or distributed for direct
conunercial advantage, the ACM copyright n~tice and the title of the
publication and its date apP-Car, and notice is given that copying is by
permission of the Assoc~tion for Computing Machinery. To copy
otherwise, or to republish, requires a fee and{or specific permission. ,

© 1983 ACM ·0-89791-110-5/83/008/0027 $00.75

27

tic protocol. Previous examples required the
processes to be . symmetric.

The protocols pr~sented here are not n~ces­
sarily efficient. However, if the number ·~r fttulty

I • ~ • ~

processes, t, -is 0(../N), then when running the'
processes . syn'chronously, the expected time to
r~ch agreement is constant (Theorem .3) .. ' This
result shows another ad~antage ·'of probabilistic
prot~cols, since ahy ~eterministic solution ' ~
the ''Byzantine Generals" problem cannot reach
agreement in Ie·ss than t ' 4- l _rounds, (see (1,2]).

, ' I

2. The Consensus Problem
I

A set of N asynchronous processes wish to
agree about a binary value. Each process P starts
with a binary input ~P, and

1

they all must decide
on a common value. The trivial s~lution, say,
0 is always chosen, is ·ruled out by , th'e follow'i'ng

• • i' I I \' ' i ' j

correctness criterion:

(Cl) H for all P, xp = 1J, then the decision niust
be 1J. ..

'
A process "decides" by setting a "write-once" out-
put register to be O · or 1. Thus after deciding, a
process may no longer change its decision.

To reach agreement processes communicate by
means of messages. A message is a pair (P, m),
where P is the name of the destination of the
message and 'm is its content. The message system
maintains a'message buffer M that contains all the
me'ssage&, send but not yet delivered.

A process P can send the message m to process
Q by performing send(Q, m). This operation adds

the message (Q, m) to the message buff er. Procen

. an infinite run of "the system. P ctn attempt to receive a mes.sage by perform­
ing receive(P). This operation , can- delete some

(P, m) EM, in which case we say that (P, m) was ,
delivered, or ret~rns a special null message </, and
leaves the buffer M unchanged.

Thus the message space acts nondeterminis­
tically, subject only to the condition that if
receive(P) is performed infinitely many times,
then every message (P, m) in the mess~ge buffer
is eventually delivered.

A confi_guration of the system consi~ts ~f
the internal state of each proce~'s togethe·r' with
the contents of the message buffer. An initial
configuration is one in which each proces.s ' starts
at an initial state and the message butrer is empty.

A step, of a single process takes one
configuration to another. In this primitive step
process P first performs receive(P). This may be
either a message m from the message buffer that ,. '
"."as addressed to P, or the null, message cJ>. _The!),
depending on P's internal state and on the value

. I '

received, P performs some computation (including
perhaps some probabilistic choices) ending in a
new internal state, and sends a finite number or
messages to other processes.

I

· The .processes are completely asynchronous,
that ·is, we ·make no assumptions abo~t their rela­
tive speed nor about the delay time in delivering a
mestage. • Thus ·a solution for this consensus prob- ·
lem must work correctly even against an adversary
schedule. We allow such schedule to choose the ·
next process P to make a step, and to control the
message system. The schedule choice may depend
on the current configuration as well . as on all the
past history of the computation.

, Thus starting from an mitial configuration,
the schedule chooses the first process to make
a step. This step may end in many ditrerent
configurations. Once P made its s~ep, some pos­
sible configuration has been reached. Knowing
this, the schedule now chooaes the next process to
step and what his receive opera~ion will return.
This process completes hiJ step leaving the sys­
tem in some configuration, and so on, producing ,

• A sc·hedule is t-correct if on any infinite run,

fl ·t ber of steps, at most t processes make a m e num
· d 1· d if the and any message is eventually e 1vere

. fl ·t number of receiving process makes an m m e
f ·1 11 ed is a process steps. Thus the only a1 ure a ow

death. It is clear, however' that other p~ocess~s
· · · ess has died or 1s cannot qetermine whether a proc

. just operating very slowly• ·

3. A Consensus Protocol
In this section we present a simple probabilistic

consensus protoc~l. In this protocol the processes
perform "rounds" of exchange of information. 0-n
each round, if some process decides v, then by the
next round all the other operating processes will
decide the same value v. H no process decides then
with some bounded positive probability all 'the
operating processes will reach agreement on the
next round. The round number r is attached to
the messages of round r, so the processes can dis­
tinguish between messagei; from different rounds.

A - Consensus Protocol

Process P: Initial value xp.

step 0: set r := 1.

step 1: Send the message (1, r, Xp) to all the
processes.

step 2: ~ait till N - t messages of type (1, r, *)
are received. ff more than N /2 messages have the
same value v, then send the message (2 D) ,r,v, to
all processes. Else &end the message (2 ?) all , r,. to
processes.

ste~ 3: Wait till N - t messages of type (2 r *)
arrive. ' '

(a) H there is one D-message (2 r v D) th
' ' ' en set Xp != V.

(b) If there are more than t D-messa
decide v. ges, then

(c) Else set xp = 1 or O each with probabilit
step 4: Set r := r + 1 and go to step 1. y ½•

Theorem 1~ Let N > 2t. For any t-correct
schedule and any initial values of the processes, the
above protocol guarantees, with probability 1, that:
(i) all the processes will eventually decide on the
same value v;
(ii} if all processes start with the 'value v, then
within one round they will all decide v; and
{iii} if for some round r, some process decides v
in step 9(b }, then all other processes will decide v
within the next round.

Remark: If N < 2t then consensus is certainly
impossible, since the schedule can then simulate a
network partition.

4. Byzantine Agreement
Here faulty processes might go completely

haywire, perhaps even sending messages accord­
ing to some malevolent plan. The following com­
pletely distributed protocol can reach agreement
even in the presence of such faults. We assume
that a process can determine the originator of a
message he has received. This is necessary since
otherwise no solution is possible.

In this setting the schedule takes care for the
message system, determines when each process
will make a step, and determines what the faulty
processes do. A schedule is t-correct if it allows
at most t faulty process and eventually delivers all
the messages to any correct process that makes an
infinite number of steps.

B - Byzantine Protocol

Process P: Initial value xp.

step 0: set r := 1.

step 1: Send the message (1,r,xp) to all the
processes.

step 2: Wait till messages of type (1, r, *) are
received from N - t processes. If more than (N +
t)/2 messages have the same value v, 'then send
the message (2, r, v_, D) to all pr?cesses. Else send
the mes·sage (2, r, ?) to all processes. ·

step 3: Wait till messages of type (2, r, *) arrive
from N - t processes.

(a) If there are at least t+l D-mes·sages (2, r, v, D),
then set Xp := v.
(b) If there are more than (N + t)/2 D-messages

then decide v.
(c) Else set Xp = J 1 or O each with probability ½­
step 4: Set r := r + 1 and go to step 1.

Theorem 2. Let N > 5t. Fpr any t-c~rrec t
schedule and any initial values of the processes, the
above protocol guarantees, with probability 1, that:
(i) all the correct processes will eventual.Ly deci~e
on the same value v;
{ii} if all correct processes start with the value v,

then within one round they will all decide v; and
(iii) if for some round r, some correct process
decides v in step 8(b }, then all other correct

· processes will decide v within the next round.

\
29

Remark: We do not know whether N > St
is the best possible bound to reach distributed
Byzantine agreement.

5. Efficiency
The protocols above are not very efficient, and

in particular the expected number of rounds to
reach agreement may be exponential. , However
if the number of faulty processes is 0(.JFi) then
the following theorem shows that the expected
number of rounds to reach agreement is constaht.

Theorem 3. If t = 0('1N) then the expected
number of rounds to reach agreement in protocols
A and B is constant, (i.e. does n~t depend on N).

This last result is especially interesting sinc_e
for deterministi~ protocols it is known that Byzan- \
tine agreement is impossible in less than t + 1 \
rounds of exchange of information [1,2].

Acknowledgment .
The author would like to thank Nancy Lynch

for many helpful discussions.

References

[1) Dolev, D. and Strong, R. Polynomial Algo­
rithms for Byzantine_. Agreement. Proc. 14th

\

ACM Symp. on Theory of Co~puting (1982),
401-407.

[2] Fischer, M. and Lynch, N. A Lower Bound
· f 9r the Time to Assure Interactive Con sis-

, I

tency. ~nformation Processing Le.tters 14, 4
(1982}, 182-186.

[3] · Fischer, M., Lynch, N. and Paterson, M.
lmposJ,ibility· of Distributed Co~sensus With

'1 I (•

One Faulty ,Process. MIT /LCS/TR-282.
'i . \ ' ' - -

(4] Lehm·an, D. and Rabin, M. On the Ad-
vantages of Fx:ee Choice: A Symmetric and
Fully -Distr,ib~ed Solution to :the Dining

, Philosophers Problem. to appear.

I. I

' l I

I

l.

	a27
	a28
	a29
	a30

