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1. Iotroduction 
Recently, Fischer, Lynch and Paterson (3) 

proved that no completely asynchronous con-• 
I 

sensus protocol can tolerate even a single un-
announced process death. We exhibit here a 
probabilistic solution for this problem, which 
guarantees that ~ as long as a majority of the 
processes cont'fnues to operate, a deci~ion will be 
made (Theorem ~). 0.ur solution is co_mpletely 
asynchronous and is rather strong: As in (4}, it 
is g~aranteed to work with probability 1 even 
against an· adversary sc~eduler who knows all 
about the system. 

We apply the same ideas to the ''Byzantine" ·. 
type of failure. Here, if the number of faulty 
processes, t, satisfies St ~ N, where N is the 
total number of the p~ocesses, then completely 
asynchronous agreement is possible (Theorem 2). 

Our protocols provide the first example of 
a synchronization problem that has a probabil­
istic solution which is always guaranteed to work, 
but cannot be solved at all by any de~erminis-
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tic protocol. Previous examples required the 
processes to be . symmetric. 

The protocols pr~sented here are not n~ces­
sarily efficient. However, if the number ·~r fttulty 

I • ~ • ~ 

processes, t, -is 0( ../N), then when running the' 
processes . syn'chronously, the expected time to 
r~ch agreement is constant (Theorem .3) .. ' This 
result shows another ad~antage ·'of probabilistic 
prot~cols, since ahy ~eterministic solution ' ~ 
the ''Byzantine Generals" problem cannot reach 
agreement in Ie·ss than t ' 4- l _rounds, (see (1,2]). 

, ' I 

2. The Consensus Problem 
I 

A set of N asynchronous processes wish to 
agree about a binary value. Each process P starts 
with a binary input ~P, and 

1

they all must decide 
on a common value. The trivial s~lution, say, 
0 is always chosen, is ·ruled out by , th'e follow'i'ng 

• • i' I I \' ' i ' j 

correctness criterion: 

(Cl) H for all P, xp = 1J, then the decision niust 
be 1J. .. 

' 
A process "decides" by setting a "write-once" out-
put register to be O · or 1. Thus after deciding, a 
process may no longer change its decision. 

To reach agreement processes communicate by 
means of messages. A message is a pair (P, m), 
where P is the name of the destination of the 
message and 'm is its content. The message system 
maintains a'message buffer M that contains all the 
me'ssage&, send but not yet delivered. 

A process P can send the message m to process 
Q by performing send( Q, m ). This operation adds 

the message ( Q, m) to the message buff er. Procen 



. an infinite run of "the system. P ctn attempt to receive a mes.sage by perform­
ing receive(P). This operation , can- delete some 

(P, m) EM, in which case we say that (P, m) was , 
delivered, or ret~rns a special null message </, and 
leaves the buffer M unchanged. 

Thus the message space acts nondeterminis­
tically, subject only to the condition that if 
receive(P) is performed infinitely many times, 
then every message (P, m) in the mess~ge buffer 
is eventually delivered. 

A confi_guration of the system consi~ts ~f 
the internal state of each proce~'s togethe·r' with 
the contents of the message buffer. An initial 
configuration is one in which each proces.s ' starts 
at an initial state and the message butrer is empty. 

A step, of a single process takes one 
configuration to another. In this primitive step 
process P first performs receive(P). This may be 
either a message m from the message buffer that ,. ' 
"."as addressed to P, or the null, message cJ>. _The!), 
depending on P's internal state and on the value 
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received, P performs some computation (including 
perhaps some probabilistic choices) ending in a 
new internal state, and sends a finite number or 
messages to other processes. 

I 

· The .processes are completely asynchronous, 
that ·is, we ·make no assumptions abo~t their rela­
tive speed nor about the delay time in delivering a 
mestage. • Thus ·a solution for this consensus prob- · 
lem must work correctly even against an adversary 
schedule. We allow such schedule to choose the · 
next process P to make a step, and to control the 
message system. The schedule choice may depend 
on the current configuration as well . as on all the 
past history of the computation. 

, Thus starting from an mitial configuration, 
the schedule chooses the first process to make 
a step. This step may end in many ditrerent 
configurations. Once P made its s~ep, some pos­
sible configuration has been reached. Knowing 
this, the schedule now chooaes the next process to 
step and what his receive opera~ion will return. 
This process completes hiJ step leaving the sys­
tem in some configuration, and so on, producing , 

• A sc·hedule is t-correct if on any infinite run, 

fl ·t ber of steps, at most t processes make a m e num 
· d 1· d if the and any message is eventually e 1vere 

. fl ·t number of receiving process makes an m m e 
f ·1 11 ed is a process steps. Thus the only a1 ure a ow 

death. It is clear, however' that other p~ocess~s 
· · · ess has died or 1s cannot qetermine whether a proc 

. just operating very slowly• · 

3. A Consensus Protocol 
In this section we present a simple probabilistic 

consensus protoc~l. In this protocol the processes 
perform "rounds" of exchange of information. 0-n 
each round, if some process decides v, then by the 
next round all the other operating processes will 
decide the same value v. H no process decides then 
with some bounded positive probability all 'the 
operating processes will reach agreement on the 
next round. The round number r is attached to 
the messages of round r, so the processes can dis­
tinguish between messagei; from different rounds. 

A - Consensus Protocol 

Process P: Initial value xp. 

step 0: set r := 1. 

step 1: Send the message (1, r, Xp) to all the 
processes. 

step 2: ~ait till N - t messages of type (1, r, *) 
are received. ff more than N /2 messages have the 
same value v, then send the message (2 D) ,r,v, to 
all processes. Else &end the message (2 ?) all , r,. to 
processes. 

ste~ 3: Wait till N - t messages of type (2 r *) 
arrive. ' ' 

(a) H there is one D-message (2 r v D) th 
' ' ' en set Xp != V. 

(b) If there are more than t D-messa 
decide v. ges, then 

(c) Else set xp = 1 or O each with probabilit 
step 4: Set r := r + 1 and go to step 1. y ½• 



Theorem 1~ Let N > 2t. For any t-correct 
schedule and any initial values of the processes, the 
above protocol guarantees, with probability 1, that: 
(i) all the processes will eventually decide on the 
same value v; 
(ii} if all processes start with the 'value v, then 
within one round they will all decide v; and 
{iii} if for some round r, some process decides v 
in step 9(b }, then all other processes will decide v 
within the next round. 

Remark: If N < 2t then consensus is certainly 
impossible, since the schedule can then simulate a 
network partition. 

4. Byzantine Agreement 
Here faulty processes might go completely 

haywire, perhaps even sending messages accord­
ing to some malevolent plan. The following com­
pletely distributed protocol can reach agreement 
even in the presence of such faults. We assume 
that a process can determine the originator of a 
message he has received. This is necessary since 
otherwise no solution is possible. 

In this setting the schedule takes care for the 
message system, determines when each process 
will make a step, and determines what the faulty 
processes do. A schedule is t-correct if it allows 
at most t faulty process and eventually delivers all 
the messages to any correct process that makes an 
infinite number of steps. 

B - Byzantine Protocol 

Process P: Initial value xp. 

step 0: set r := 1. 

step 1: Send the message (1,r,xp) to all the 
processes. 

step 2: Wait till messages of type (1, r, *) are 
received from N - t processes. If more than ( N + 
t)/2 messages have the same value v, 'then send 
the message (2, r, v_, D) to all pr?cesses. Else send 
the mes·sage (2, r, ?) to all processes. · 

step 3: Wait till messages of type (2, r, *) arrive 
from N - t processes. 

(a) If there are at least t+l D-mes·sages (2, r, v, D), 
then set Xp := v. 
(b) If there are more than (N + t)/2 D-messages 

then decide v. 
(c) Else set Xp = J 1 or O each with probability ½­
step 4: Set r := r + 1 and go to step 1. 

Theorem 2. Let N > 5t. Fpr any t-c~rrec t 
schedule and any initial values of the processes, the 
above protocol guarantees, with probability 1, that: 
(i) all the correct processes will eventual.Ly deci~e 
on the same value v; 
{ii} if all correct processes start with the value v, 

then within one round they will all decide v; and 
(iii) if for some round r, some correct process 
decides v in step 8(b }, then all other correct 

· processes will decide v within the next round. 
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Remark: We do not know whether N > St 
is the best possible bound to reach distributed 
Byzantine agreement. 

5. Efficiency 
The protocols above are not very efficient, and 

in particular the expected number of rounds to 
reach agreement may be exponential. , However 
if the number of faulty processes is 0( .JFi) then 
the following theorem shows that the expected 
number of rounds to reach agreement is constaht. 

Theorem 3. If t = 0( '1N) then the expected 
number of rounds to reach agreement in protocols 
A and B is constant, (i.e. does n~t depend on N ). 

This last result is especially interesting sinc_e 
for deterministi~ protocols it is known that Byzan- \ 
tine agreement is impossible in less than t + 1 \ 
rounds of exchange of information [1,2]. 
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