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Abstract. The consensus problem involves an asynchronous system of processes, some of which may be unreliable.
The problem is for the reliable processes to agree on a binary value. In this paper, it is shown that every protocol for
this problem has the possibility of non-termination, even with only one faulty process. By way of contrast, solutions
are known for the synchronous case, the “Byzantine Generals” problem.
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1 INTRODUCTION
The problem of reaching agreement among remote processes is one of the most fundamental problems in distributed
computing and is at the core of many algorithms for distributed data processing, distributed file management, and
fault-tolerant distributed applications.
A well-known form of the problem is the “transaction commit problem”, which arises in distributed database systems

[6, 13, 15–17, 21–24] (see also G. LeLann, private communication, quoted in [15]). The problem is for all the data
manager processes that have participated in the processing of a particular transaction to agree on whether to install
the transaction’s results in the database or to discard them. The latter action might be necessary, for example, if some
data managers were, for any reason, unable to carry out the required transaction processing.Whatever decision is made,
all data managers must make the same decision in order to preserve the consistency of the database.
Reaching the type of agreement needed for the “commit” problem is straightforward if the participating processes and

the network are completely reliable. However, real systems are subject to a number of possible faults, such as process
crashes, network partitioning, and lost, distorted, or duplicated messages. One can even consider more Byzantine types
of failure [5, 7, 8, 11, 14, 18, 19] in which faulty processes might go completely haywire, perhaps even sending messages
according to some malevolent plan. One therefore wants an agreement protocol that is as reliable as possible in the
presence of such faults. Of course, any protocol can be overwhelmed by faults that are too frequent or too severe, so
the best that one can hope for is a protocol that is tolerant to a prescribed number of “expected” faults.
In this paper, we show the surprising result that no completely asynchronous consensus protocol can tolerate even a

single unannounced process death. We do not consider Byzantine failures, and we assume that the message system is
reliable—it delivers all messages correctly and exactly once. Nevertheless, even with these assumptions, the stopping
of a single process at an inopportune time can cause any distributed commit protocol to fail to reach agreement. Thus,
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this important problem has no robust solution without further assumptions about the computing environment or still
greater restrictions on the kind of failures to be tolerated!
Crucial to our proof is that processing is completely asynchronous; that is, wemake no assumptions about the relative

speeds of processes or about the delay time in delivering a message. We also assume that processes do not have access
to synchronized clocks, so algorithms based on time-outs, for example, cannot be used. (In particular, the solutions in
[6] are not applicable.) Finally, we do not postulate the ability to detect the death of a process, so it is impossible for
one process to tell whether another has died (stopped entirely) or is just running very slowly.
Our impossibility result applies to even a very weak form of the consensus problem. Assume that every process starts

with an initial value in {0, 1}. A non-faulty process decides on a value in {0, 1} by entering an appropriate decision state.
All non-faulty processes that make a decision are required to choose the same value. For the purpose of the impossibility
proof, we require only that some process eventually make a decision. (Of course, any algorithm of interest would require
that all non-faulty processes make a decision.) The trivial solution in which, say, 0 is always chosen is ruled out by
stipulating that both 0 and 1 are possible decision values, although perhaps for different initial configurations.
Our systemmodel is rather strong so as to make our impossibility proof as widely applicable as possible. Processes are

modeled as automata (with possibly infinitely many states) that communicate by means of messages. In one atomic step,
a process can attempt to receive a message, perform local computation on the basis of whether or not a message was
delivered to it (and if so, which one), and send an arbitrary but finite set of messages to other processes. In particular, an
“atomic broadcast” capability is assumed, so a process can send the same message in one step to all other processes with
the knowledge that if any non-faulty process receives themessage, then all the non-faulty processes will. Everymessage
is eventually delivered as long as the destination process makes infinitely many attempts to receive, but messages can
be delayed, arbitrarily long, and delivered out of order.
The asynchronous commit protocols in current use all seem to have a “window of vulnerability”—an interval of time

during the execution of the algorithm in which the delay or inaccessibility of a single process can cause the entire
algorithm to wait indefinitely. It follows from our impossibility result that every commit protocol has such a “window”,
confirming a widely believed tenet in the folklore.

2 CONSENSUS PROTOCOLS
A consensus protocol 𝑃 is an asynchronous system of 𝑁 processes (𝑁 ≥ 2). Each process 𝑝 has a one-bit input register
𝑥𝑝 , an output register 𝑦𝑝 with values in {𝑏, 0, 1}, and an unbounded amount of internal storage. The values in the input
and output registers, together with the program counter and internal storage, comprise the internal state. Initial states
prescribe fixed starting values for all but the input register; in particular, the output register starts with value 𝑏. The
states in which the output register has value 0 or 1 are distinguished as being decision states. 𝑝 acts deterministically
according to a transition function. The transition function cannot change the value of the output register once the
process has reached a decision state; that is, the output register is “write-once”. The entire system 𝑃 is specified by the
transition functions associated with each of the processes and the initial values of the input registers.
Processes communicate by sending each other messages. A message is a pair (𝑝,𝑚), where 𝑝 is the name of the

destination process and 𝑚 is a “message value” from a fixed universe 𝑀 . The message system maintains a multiset,
called the message buffer, of messages that have been sent but not yet delivered. It supports two abstract operations:

• send(𝑝,𝑚): Places (𝑝,𝑚) in the message buffer;
• receive(𝑝): Deletes some message (𝑝,𝑚) from the buffer and returns𝑚, in which case we say (𝑝,𝑚) is delivered,
or returns the special null marker ∅ and leaves the buffer unchanged.

Thus, the message system acts non-deterministically, subject only to the condition that if receive(𝑝) is performed
infinitelymany times, then everymessage (𝑝,𝑚) in themessage buffer is eventually delivered. In particular, themessage
system is allowed to return∅ a finite number of times in response to receive(𝑝), even though amessage (𝑝,𝑚) is present
in the buffer.
A configuration of the system consists of the internal state of each process, together with the contents of the message

buffer. An initial configuration is one in which each process starts at an initial state and the message buffer is empty.
A step takes one configuration to another and consists of a primitive step by a single process 𝑝 . Let𝐶 be a configuration.

The step occurs in two phases. First, receive(𝑝) is performed on the message buffer in𝐶 to obtain a value𝑚 ∈ 𝑀 ∪ {∅}.
Then, depending on 𝑝’s internal state in𝐶 and on𝑚, 𝑝 enters a new internal state and sends a finite set of messages to
other processes. Since processes are deterministic, the step is completely determined by the pair 𝑒 = (𝑝,𝑚), which we
call an event. (This “event” should be thought of as the receipt of𝑚 by 𝑝 .) 𝑒 (𝐶) denotes the resulting configuration, and
we say that 𝑒 can be applied to 𝐶 . Note that the event (𝑝,∅) can always be applied to 𝐶 , so it is always possible for a
process to take another step.
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A schedule from 𝐶 is a finite or infinite sequence 𝜎 of events that can be applied, in turn, starting from 𝐶 . The
associated sequence of steps is called a run. If 𝜎 is finite, we let 𝜎 (𝐶) denote the resulting configuration, which is said
to be reachable from 𝐶 . A configuration reachable from some initial configuration is said to be accessible. Hereafter, all
configurations mentioned are assumed to be accessible.
The following lemma expresses a “commutativity” property of schedules.

LEMMA 1. Suppose that from some configuration𝐶 , the schedules 𝜎1, 𝜎2, lead to configurations𝐶1,𝐶2, respectively. If the
sets of processes taking steps in 𝜎1 and 𝜎2, respectively, are disjoint, then 𝜎2 can be applied to 𝐶1 and 𝜎1 can be applied to
𝐶2, and both lead to the same configuration 𝐶3. (See Figure 1.)
PROOF.The result follows at once from the system definition, since 𝜎1 and 𝜎2 do not interact. □
A configuration 𝐶 has decision value 𝑣 if some process 𝑝 is in a decision state with 𝑦𝑝 = 𝑣 . A consensus protocol is

partially correct if it satisfies two conditions:
(1) No accessible configuration has more than one decision value.
(2) For each 𝑣 ∈ {0, 1}, some accessible configuration has decision value 𝑣 .
A process 𝑝 is non-faulty in a run provided that it takes infinitely many steps, and it is faulty otherwise. A run is

admissible provided that at most one process is faulty and that all messages sent to non-faulty processes are eventually
received.
A run is a deciding run provided that some process reaches a decision state in that run. A consensus protocol 𝑃 is

totally correct in spite of one fault if it is partially correct, and every admissible run is a deciding run. Our main theorem
shows that every partially correct protocol for the consensus problem has some admissible run that is not a deciding
run.
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3 MAIN RESULT
THEOREM 1. No consensus protocol is totally correct in spite of one fault.
PROOF. Assume to the contrary that 𝑃 is a consensus protocol that is totally correct in spite of one fault. We prove a
sequence of lemmas which eventually lead to a contradiction.
The basic idea is to show circumstances under which the protocol remains forever indecisive. This involves two steps.

First, we argue that there is some initial configuration in which the decision is not already predetermined. Second, we
construct an admissible run that avoids ever taking a step that would commit the system to a particular decision.
Let 𝐶 be a configuration and let 𝑉 be the set of decision values of configurations reachable from 𝐶 . 𝐶 is bivalent if

|𝑉 | = 2. 𝐶 is univalent if |𝑉 | = 1, let us say 0-valent or 1-valent according to the corresponding decision value. By the
total correctness of 𝑃 , and the fact that there are always admissible runs, 𝑉 ≠ ∅. □
LEMMA 2. 𝑃 has a bivalent initial configuration.
PROOF. Assume not. Then 𝑃 must have both 0-valent and 1-valent initial configurations by the assumed partial cor-
rectness. Let us call two initial configurations adjacent if they differ only in the initial value 𝑥𝑝 of a single process 𝑝 . Any
two initial configurations are joined by a chain of initial configurations, each adjacent to the next. Hence, there must
exist a 0-valent initial configuration 𝐶0 adjacent to a 1-valent initial configuration 𝐶1. Let 𝑝 be the process in whose
initial value they differ.
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Now consider some admissible deciding run from 𝐶0 in which process 𝑝 takes no steps, and let 𝜎 be the associated
schedule. Then 𝜎 can be applied to 𝐶1 also, and corresponding configurations in the two runs are identical except for
the internal state of process 𝑝 . It is easily shown that both runs eventually reach the same decision value. If the value
is 1, then𝐶0 is bivalent; otherwise,𝐶1 is bivalent. Either case contradicts the assumed nonexistence of a bivalent initial
configuration. □

LEMMA 3. Let 𝐶 be a bivalent configuration of 𝑃 , and let 𝑒 = (𝑝,𝑚) be an event that is applicable to 𝐶 . Let 𝒞 be the set
of configurations reachable from𝐶 without applying 𝑒 , and let𝒟 = 𝑒 (𝒞) = {𝑒 (𝐸) |𝐸 ∈ 𝒞 𝑎𝑛𝑑 e 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑡𝑜 𝒞}. Then,
𝒟 contains a bivalent configuration.
PROOF. Since 𝑒 is applicable to 𝐶 , then by definition of 𝒞 and the fact that messages can be delayed arbitrarily, 𝑒 is
applicable to every 𝐸 ∈ 𝒞.
Now assume that 𝒟 contains no bivalent configurations, so every configuration 𝐷 ∈ 𝒟 is univalent. We proceed to

derive a contradiction.
Let 𝐸𝑖 be an 𝑖-valent configuration reachable from𝐶 , 𝑖 = 0, 1. (𝐸𝑖 exists since𝐶 is bivalent.) If 𝐸𝑖 ∈ 𝒞, let 𝐹𝑖 = 𝑒 (𝐸𝑖) ∈ 𝒟.

Otherwise, 𝑒 was applied in reaching 𝐸𝑖 , and so there exists 𝐹𝑖 ∈ 𝒟 from which 𝐸𝑖 is reachable. In either case, 𝐹𝑖 is 𝑖-
valent since 𝐹𝑖 is not bivalent (since 𝐹𝑖 ∈ 𝒟 and𝒟 contains no bivalent configurations) and one of 𝐸𝑖 and 𝐹𝑖 is reachable
from the other. Since 𝐹𝑖 ∈ 𝒟, 𝑖 = 0, 1,𝒟 contains both 0-valent and 1-valent configurations.
Call two configurations neighbors if one results from the other in a single step. By an easy induction, there exist

neighbors 𝐶0, 𝐶1 ∈ 𝒞 such that 𝐷𝑖 = 𝑒 (𝐶𝑖) is 𝑖-valent, 𝑖 = 0, 1. Without loss of generality, 𝐶1 = 𝑒′(𝐶0) where 𝑒′ =
(𝑝′,𝑚′).
Case 1 . If 𝑝′ ≠ 𝑝 , then 𝐷1 = 𝑒′(𝐷0) by Lemma 1. This is impossible, since any successor of a 0-valent configuration

is 0-valent. (See Figure 2.)
Case 2. If 𝑝′ = 𝑝 , then consider any finite deciding run from 𝐶0 in which 𝑝 takes no steps.
Let 𝜎 be the corresponding schedule, and let 𝐴 = 𝜎 (𝐶0). By Lemma 1, 𝜎 is applicable to 𝐷𝑖 , and it leads to an 𝑖-valent

configuration 𝐸𝑖 = 𝜎 (𝐷𝑖), 𝑖 = 0, 1. Also by Lemma 1, 𝑒 (𝐴) = 𝐸0 and 𝑒 (𝑒′(𝐴)) = 𝐸1. (See Figure 3.) Hence, 𝐴 is bivalent.
But this is impossible since the run to 𝐴 is deciding (by assumption), so 𝐴 must be univalent.
In each case, we reached a contradiction, so𝒟 contains a bivalent configuration. □
Any deciding run from a bivalent initial configuration goes to a univalent configuration, so there must be some single

step that goes from a bivalent to a univalent configuration. Such a step determines the eventual decision value. We now
show that it is always possible to run the system in a way that avoids such steps, leading to an admissible non-deciding
run.
The run is constructed in stages, starting from an initial configuration. We ensure that the run is admissible in the

following way. A queue of processes is maintained, initially in an arbitrary order, and the message buffer in a configu-
ration is ordered according to the time the messages were sent, earliest first. Each stage consists of one or more process
steps. The stage ends with the first process in the process queue taking a step in which, if its message queue was not
empty at the start of the stage, its earliest message is received. This process is then moved to the back of the process
queue. In any infinite sequence of such stages every process takes infinitely many steps and receives every message
sent to it. The run is therefore admissible. Our problem, of course, is to do this in such a way as to avoid a decision ever
being reached.
Let 𝐶0 be a bivalent initial configuration whose existence is assured by Lemma 2. Execution begins in 𝐶0, and we

ensure that every stage begins from a bivalent configuration. Suppose then that configuration 𝐶 is bivalent and that
process 𝑝 heads the priority queue. Let𝑚 be the earliest message to 𝑝 in 𝐶’s message buffer, if any, and ∅ otherwise.
Let 𝑒 = (𝑝,𝑚). By Lemma 3, there is a bivalent configuration 𝐶′ reachable from 𝐶 by a schedule in which 𝑒 is the last
event applied. The corresponding sequence of steps defines the stage.
Since each stage ends in a bivalent configuration, every stage in the construction of the infinite schedule succeeds.

The resulting run is admissible, and no decision is ever reached. It follows that 𝑃 is not totally correct. □

4 INITIALLY DEAD PROCESSES
In this section, we exhibit a protocol that solves the consensus problem for 𝑁 processes as long as a majority of the pro-
cesses are non-faulty and no process dies during the execution of the protocol. No process knows in advance, however,
which of the processes are initially dead and which are not.
The protocol works in two stages. During the first stage, the processes construct a directed graph 𝐺 with a node

corresponding to each process. Every process broadcasts a message containing its process number and then listens for
messages from 𝐿 − 1 other processes, where 𝐿 = ⌈(𝑁 + 1)/2⌉. 𝐺 has an edge from 𝑖 to 𝑗 iff 𝑗 receives a message from 𝑖 .
Thus, 𝐺 has in-degree 𝐿 − 1.
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In the second stage, the processes construct𝐺+ (the transitive closure of𝐺) in the sense that upon completion of this
stage, each process 𝑘 knows about all of the edges ( 𝑗, 𝑘) incident on 𝑘 in 𝐺+ as well as the initial values of all such 𝑗 .
To carry out this stage, each process broadcasts to all other processes its process number and initial value together

with the names of the 𝐿 − 1 processes it heard from during the first stage. It then waits until it has received a stage 2
message from every ancestor in𝐺 that it knows about. Initially, it knows only about the 𝐿 − 1 processes from which it
heard directly during the first stage, but it learns about additional ancestors from the stage 2 messages that it receives.
Waiting continues until such time as all currently known-about processes have been heard from.
At this point, each process knows all of its own ancestors and the edges of𝐺 incident on them. Using this information,

it computes all of the edges of 𝐺+ incident on each of its ancestors. It then determines which of its ancestors belong
to an initial clique of 𝐺+, that is, a clique with no incoming edges. To do this, it uses the fact that a node 𝑘 is in an
initial clique iff 𝑘 is itself an ancestor of every node 𝑗 that is an ancestor of 𝑘 . Since every node in𝐺+ has at least 𝐿 − 1
predecessors, there can be only one initial clique; it has cardinality at least 𝐿, and every process that completes the
second stage knows exactly the set of processes comprising it.
Finally, each process makes a decision based on the initial values of the processes in the initial clique using any

agreed-upon rule. Since all processes know the initial values of all members of the initial clique, they all reach the same
decision.
The correctness of this protocol proves the following theorem.

THEOREM 2. There is a partially correct consensus protocol in which all non-faulty processes always reach a decision,
provided no processes die during its execution and a strict majority of the processes are alive initially.

5 CONCLUSION
We have shown that a natural and important problem of fault-tolerant cooperative computing cannot be solved in a to-
tally asynchronous model of computation. These results do not show that such problems cannot be “solved” in practice;
rather, they point up the need for more refined models of distributed computing that better reflect realistic assumptions
about processor and communication timings, and for less stringent requirements on the solution to such problems. (For
example, termination might be required only with probability 1.) Subsequent to the original announcement of these
results [12], progress has been made along both of these lines [1–4, 9, 10, 20, 25].
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